

1

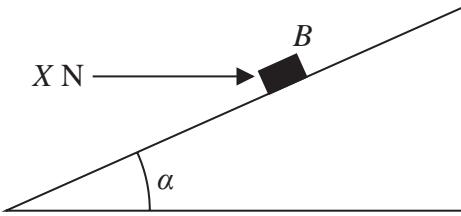


Figure 1

A rough plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$

A small block B of mass 5 kg is held in equilibrium on the plane by a horizontal force of magnitude X newtons, as shown in Figure 1.

The force acts in a vertical plane which contains a line of greatest slope of the inclined plane.

The block B is modelled as a particle.

The magnitude of the normal reaction of the plane on B is 68.6N.

Using the model,

(a) (i) find the magnitude of the frictional force acting on B ,

(3)

(ii) state the direction of the frictional force acting on B .

(1)

The horizontal force of magnitude X newtons is now removed and B moves down the plane.

Given that the coefficient of friction between B and the plane is 0.5.

(b) find the acceleration of B down the plane.

(6)

2

[In this question, \mathbf{i} and \mathbf{j} are horizontal unit vectors.]

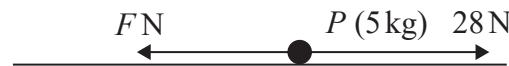
A particle P of mass 4 kg is at rest at the point A on a smooth horizontal plane.

At time $t = 0$, two forces, $\mathbf{F}_1 = (4\mathbf{i} - \mathbf{j})\text{N}$ and $\mathbf{F}_2 = (\lambda\mathbf{i} + \mu\mathbf{j})\text{N}$, where λ and μ are constants, are applied to P

Given that P moves in the direction of the vector $(3\mathbf{i} + \mathbf{j})$

(a) show that

$$\lambda - 3\mu + 7 = 0 \quad (4)$$


At time $t = 4$ seconds, P passes through the point B .

Given that $\lambda = 2$

(b) find the length of AB .

(5)

3.

Figure 1

A particle P has mass 5 kg.

The particle is pulled along a rough horizontal plane by a horizontal force of magnitude 28 N.

The only resistance to motion is a frictional force of magnitude F newtons, as shown in Figure 1.

(a) Find the magnitude of the normal reaction of the plane on P .

(1)

The particle is accelerating along the plane at 1.4 m s^{-2}

(b) Find the value of F

(2)

The coefficient of friction between P and the plane is μ

(c) Find the value of μ , giving your answer to 2 significant figures.

(1)

4.

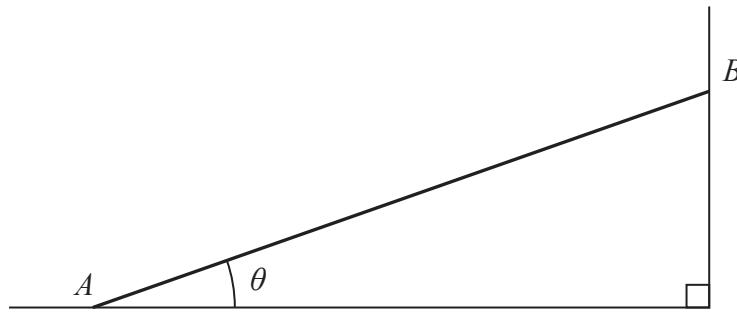


Figure 3

A rod AB has mass M and length $2a$.

The rod has its end A on rough horizontal ground and its end B against a smooth vertical wall.

The rod makes an angle θ with the ground, as shown in Figure 3.

The rod is at rest in limiting equilibrium.

(a) State the direction (left or right on Figure 3 above) of the frictional force acting on the rod at A . **Give a reason for your answer.**

(1)

The magnitude of the normal reaction of the wall on the rod at B is S .

In an initial model, the rod is modelled as being **uniform**.

Use this initial model to answer parts (b), (c) and (d).

(b) By taking moments about A , show that

$$S = \frac{1}{2} Mg \cot \theta \quad (3)$$

The coefficient of friction between the rod and the ground is μ

Given that $\tan \theta = \frac{3}{4}$

(c) find the value of μ (5)

(d) find, in terms of M and g , the magnitude of the resultant force acting on the rod at A . (3)

In a new model, the rod is modelled as being **non-uniform**, with its centre of mass closer to B than it is to A .

A new value for S is calculated using this new model, with $\tan \theta = \frac{3}{4}$

(e) State whether this new value for S is larger, smaller or equal to the value that S would take using the initial model. **Give a reason for your answer.** (1)